Indian Statistical Institute, Bangalore

B. Math.

First Year, First Semester
Analysis -I
Back paper Examination
Maximum marks: 100

Date: 26 December 2022
Time: 3 hours
Instructor: B V Rajarama Bhat

Notation: In the following when intervals $[a, b],(a, b)$ or $\left[a^{\prime}, b^{\prime}\right]$ are considered it is assumed that $a, b, a^{\prime}, b^{\prime} \in \mathbb{R}$ and $a<b, a^{\prime}<b^{\prime}$.
(1) (i) Show that the set of continuous functions h from $[0,1]$ to \mathbb{R} such that $h\left(\frac{1}{2}\right)=0$ is uncountable.
(ii) Show that the set of continuous functions h on $[0,1]$ such that $h(t)$ is an integer for every t in $[0,1]$ is countable.
[15]
(2) State and prove Bolzano-Weierstrass theorem for sequences of real numbers.
(3) Compute liminf and limsup for following sequences.
(i) $a_{n}=-2+\frac{n^{2}-5}{3 n^{3}+2 n+4}$ for $n \geq 1$.
(ii) $b_{n}=5+\left(-\frac{1}{2}\right)^{n}+(-1)^{n} 3$ for $n \geq 1$.
(iii) $c_{n}=\frac{4}{3+\left(-\frac{2}{3}\right)^{n}}$ for $n \geq 1$.
(4) Let $v: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $v(3 x)=v(x)$ for all $x \in \mathbb{R}$. (i) If v is continuous show that it is a constant function. (ii) Give an example to show that this may not be true if v is discontinuous.
(5) Let $h:(a, b) \rightarrow \mathbb{R}$ be a uniformly continuous function.
(i) Show that if $\left\{x_{n}\right\}_{n \geq 1}$ is a Cauchy sequence in $(a, b),\left\{h\left(x_{n}\right)\right\}_{n \geq 1}$ is Cauchy.
(ii) Show that $\lim _{x \rightarrow a+} h(x)$ exists.
(6) Let $n \in \mathbb{N}$. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function n-times differentiable on $[a, b]$ and $f^{(n)}(t)=0$ for every $t \in[a, b]$. Show that f is a polynomial.
(7) Let $f:[a, b] \rightarrow \mathbb{R}$ and $g:\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}$ be functions with $f([a, b]) \subseteq\left[a^{\prime}, b^{\prime}\right]$. Take $h=g \circ f$. Suppose $c \in[a, b]$ and $c^{\prime}=f(c)$. Assume that f is differentiable at c and g is differentiable at c^{\prime}. Show that h is differentiable at c and

$$
h^{\prime}(c)=g^{\prime}\left(c^{\prime}\right) f^{\prime}(c) .
$$

